
WHITEBOOK

A clear understanding
of loops in Terraform
Januari 2022

Auteur:
Wilbert Spaanderman
INTEGRATIESPECIALIST

 Whitebook | A clear understanding of loops in Terraform | 2

Introduction
Since version 0.13 Terraform, created by HashiCorp, supports loops in resources and
modules. Especially, there was a high demand for the feature ‘loop over modules’. This will
generate high code developing advantages. Possible use cases for this are for example:

• Creating the exact same infrastructure over multiple regions in a cloud.
• Increasing or decreasing the amount of virtual machines in the infrastructure with just

changing a single number.
• Updating virtual machines in a high available manner becomes really simple. Just add

some new machines in the infrastructure, update those new machines, update the old
machines and remove the last added machines again.

 Whitebook | A clear understanding of loops in Terraform | 3

However, I noticed that the Terraform loops can also be really fragile. It can completely
destroy the Terraform plans. Furthermore it costs some time to have a complete
understanding of how HashiCorp implemented these looping features. This Whitebook will
help to understand how HashiCorp implement loops in Terraform and especially how not to
use them. It contains the following topics:

1. Loop over a singular resource
2. Difference between count and for_each
3. Chaining loops over chained resources
4. Loop over a singular module
5. Loop over nested modules using the for-loop
6. Loop over a set of objects
7. Only use ‘known values’ in for_each loops

Before we start first some information about the structure that is used in Terraform. It all
starts with provide ‘azurerm’ in the terraform.tf file. The provider mainly will be used to
create several resource-groups in Microsoft Azure Cloud. The terraform.tf file also contains
the main module. This module will call another module called ‘region’. Region is the
equivalent of the regions used in Microsoft Azure, for example West-Europe and North-
Europe. Eventually, region will call the module ‘resourcegroup’ which will be the module to
create resource-groups in Microsoft Azure.

|── provider[registry.terraform.io/hashicorp/azurerm] 2.84.0
|── module.main (terraform.tf)
│ |── module.region (region.tf)
│ │ └── module.resourcegroup (resourcegroup.tf)

 Whitebook | A clear understanding of loops in Terraform | 4

Loop over a singular resource
As mentioned in the introduction we will first loop over a single resource to create multiple
resource-groups in Microsoft Azure. Terraform has two ways to create loops: ‘for_each’
and ‘count’. The example below make use of the for_each command for creating multiple
resource-groups called ‘rg_MyResourceGroups’. It is pretty straight forward. The for_each
count the amount of names defined in variable ‘names’ and will create that number of
resource-groups. In the example three names are defined in variable ‘names’, so it will create
three resource-groups in Microsoft Azure.

variable “names” {
 type = set(string)
 default = [“rg_MyFirstRG”,”rg_MySecondRG”,”rg_MyThirdRG”]
}

resource “azurerm_resource_group” “rg_MyResourceGroups” {
 for_each = var.names
 name = each.key
 location = var.region
}

Code block 1: for_each loop over a singular resource.

The each.key is an object provided by Terraform and contains the corresponding value of the
running instance. So in this case, the first resource-group will get the first name from variable
‘names’, the second will contain the second name, etc. Because ‘names’ is defined as a set
both, each.key and each.value could be used here.
When a variable is of type map, for example: { name = “myName”, age = “30” }. the each.key
corresponds to the key of the map and each.value corresponds to the value of the map.

 Whitebook | A clear understanding of loops in Terraform | 5

Plan result:

Plan Result 1: Three resources will be created.

Important: the for_each command only works unindexed types. In Terraform this means
either a set or a map of strings! For indexed types like lists or objects the ‘count’ command
has to be used.

 Whitebook | A clear understanding of loops in Terraform | 6

Difference between count and for_each
Although count and the for_each looks pretty the same, there are some differences between
them. As mentioned in the previous chapter, one of the differences between count and for
each is that count is always indexed. When something is changed in the Terraform code,
Terraform should only apply the change that is part of the code changed. However, because
the count is indexed, changing the count loop can cause more apply changes in Terraform
than expected beforehand. This chapter explains that count should only be used when for_
each is no option anymore.

Changing a for_each loop
Back to the for_each example from the previous chapter. There, three resource-groups were
created: ‘rg_MyFirstRG’, ‘rg_MySecondRG’, ‘rg_MyThirdRG’. But what will happen if we
remove the ‘rg_MySecondRG’ in the code? Expected is that the Terraform plan will say that
‘rg_MySecondRG’ will be destroyed:

variable “names” {
 type = set(string)
 default = [“rg_MyFirstRG”,”rg_MyThirdRG”]
}

resource “azurerm_resource_group” “rg_MyResourceGroups” {
 for_each = var.names
 name = each.key
 location = var.region
}

Code block 2: rg_MySecondRG is removed from the code

Result of the Terraform plan:

Plan Result 2: Terraform destroys the resource-group ‘rg_MySecondRG’

 Whitebook | A clear understanding of loops in Terraform | 7

Terraform destroys as expected the second resource-group ‘rg_MySecondRG’. Also when a new
resource-group, ‘rg_MyFourthRG’, is added, Terraform reacts as expected:

variable “names” {
 type = set(string)
 default = [“rg_MyFirstRG”,”rg_MySecondRG”, “rg_MyFourthRG”, “rg_
MyThirdRG”]
}

Code block 3: rg_MyFourthRG is added to the code

Note: In the previous example only a terraform plan ran, so the second resource-group is still there.

Result of the plan:

Plan Result 3: Resource-group ‘rg_MyFourthRG’ is added to the plan

The new resource ‘rg_MyFourthRG’ is put on the third spot (index position [2]) on purpose.
Although the ‘rg_MyThirdRG’ received a new index position it is not recreated again. As desired
only the new resource-group ‘rg_MyFourthRG’ will be added.

Changing a count loop
Below is an example of how to perform the same code but then with a count instead of for_each:

variable “names” {
 type = list(string)
 default = [“rg_MyFirstRG”, “rg_MySecondRG”, “rg_MyThirdRG”]
}

resource “azurerm_resource_group” “rg_MyResourceGroups” {
 count = length(var.names)
 name = var.names[count.index]
 location = var.region
}

Code block 4: Example of a (bad) count loop

 Whitebook | A clear understanding of loops in Terraform | 8

It almost looks the same right? Almost! This is what is changed:

1. The type of variable name is changed from a set(string) to a list(string). List is an indexed
array in Terraform.

2. For_each is changed to count. Because var.names is not a countable value, the length
function is added too.

3. ‘name’ contains a count.index. This works because the list var.names contains an index
now.

Although it looks the same as the for_each, Terraform behave differently after removing
‘rg_MySecondRG’:

variable “names” {
 type = list(string)
 default = [“rg_MyFirstRG”, “rg_MyThirdRG”]
}

Code block 5: rg_MySecondRG is removed from the code

Result of the plan:

Plan Result 4: rg_MySecondRG is destroyed and rg_MyThirdRG is destroyed and created again.

Unless only ‘rg_MySecondRG’ is removed from the code, Terraform both destroys ‘rg_
MySecondRG’ and recreates ‘rg_MyThirdRG’. Although the value of ‘rg_MyThirdRG’ is not
changed, his index is changed. Therefore, Terraform destroys the ‘rg_MyThirdRG’ first and
creates it again.

 Whitebook | A clear understanding of loops in Terraform | 9

Another downside is that when the time between destroying and creating the same
resource-group is too short, Terraform will fail. This is still a bug inside Terraform. The
workaround is to run the ‘terraform apply’ command another time.

The same counts for adding a fourth resource-group and place that on the third spot, like:

variable “names” {
 type = list(string)
 default = [“rg_MyFirstRG”, “rg_MySecondRG”, “rg_MyFourthRG”, “rg_
MyThirdRG”]
}

Code block 6: rg_MyFourthRG is added to the code

The plan result:

Plan Result 5: Resource-group ‘rg_MyFourthRG’ is added to the plan, but also ‘rg_MyThirdRG’ is destroyed and

created again.

In the example above, Terraform adds the ‘rg_MyFourthRG’. Because that resource-group
name is placed on the third spot (index place [2]), also the index position of ‘rg_MyThirdRG’
is changed. Therefore, ‘rg_MyThirdRG’ will be destroyed and recreated again. The examples
of the for_each and count loops proves that for this situation the for_each is a much better
option.

 Whitebook | A clear understanding of loops in Terraform | 10

Chaining loops over chained resources
Each resource-group in Microsoft Azure can contain numbers of other resources. But how to
give each resource-group its own resources when the resource-groups are created in a for
loop. This is a so called chained resource. After creating the resource-groups a new loop have
to be created to add new resources inside each resource-group. The code below is a nice
example of how to do this.

Note: If the resource-group is created with a ‘for_each’ the output of the resource is a map. This
means that also the next loop must be a ‘for_each’. If the resource-group is created with a ‘count’
the output will be a tuple (is indexed). This means that also the next loop must be a ‘count’.

variable “names” {
 type = set(string)
 default = [“rg_MyFirstRG”, “rg_MySecondRG”, “rg_MyThirdRG”]
}

resource “azurerm_resource_group” “rg_MyResourceGroups” {
 for_each = var.names
 name = each.key
 location = var.region
}

resource “azurerm_virtual_network” “apim_vnet” {
 for_each = azurerm_resource_group.rg_MyResourceGroups
 name = “vnet-of-${each.value.name}”
 location = var.region
 resource_group_name = each.value.name
 address_space = [“10.0.0.0/20”]
}

Code block 6:Chained resources created with loops.

 Whitebook | A clear understanding of loops in Terraform | 11

The example above creates a virtual network for every resource-group. To do this, it loops
over the output of the resource block ‘rg_MyResourceGroups’. The output will return a map
with three objects. Every object (i.e.: every resource-group) contains several key value pairs,
like name and id. The virtual network needs the name of the respective resource-group to
know to whom it belongs too. The name is received with the ‘each.value.name’ function.

Figure 1: The output of the resource azurerm_resource_group.rg_MyResourceGroups visual represented.

A snippet of the plan result is:

Plan Result 6: snippet of the outcome. Three virtual networks are created. Each belonging to one resource-group.

Although this concept of using multiple loops over chained resources works, it is not ideal.
Now the resource-group contains only a virtual network. Next to the virtual network the
resource-group also needs other resources like Virtual Machines, Gateways, etcetera.
Furthermore, each Virtual Network can contain a loop of subnets, the subnet securities, etc.
Eventually this will result in an obscure, unreadable code with tightly coupled loops.

The solution for this: loop over modules.

Resource Group 1
name = rg_MyFirstRG

id = 92214249
location = westeurope

Resource Group 2
name = rg_MySecondRG

id = 92103918
location = westeurope

Resource Group 3
name = rg_MyThirdRG

id = 921032450
location = westeurope

 Whitebook | A clear understanding of loops in Terraform | 12

Loop over a singular module
A module is a container for multiple resources that are used together. This can be handy in
our example. In the module ‘resourcegroup’ only one resource code will be created now. This
resource-group will get its own virtual network. This time, the resource to create resource-
groups is not created multiple times by a loop. For that particular instance the creation of
the resource-group and the virtual network is a one-o-one relation. A direct link between the
two can be created now. This makes the Terraform code less obscure and better readable.

variable “name” {
 type = string
}

resource “azurerm_resource_group” “rg_MyResourceGroups” {
 name = var.name
 location = var.region
}

resource “azurerm_virtual_network” “apim_vnet” {
 name = “vnet-of-${azurerm_resource_group.rg_
MyResourceGroups.name}”
 location = var.region
 resource_group_name = azurerm_resource_group.rg_MyResourceGroups.name
 address_space = [“10.0.0.0/20”]
}

Code block 7:the resource-group module without loops.

The for_each loop is implemented over the module now.

variable “names” {
 type = set(string)
 default = [“rg_MyFirstRG”, “rg_MySecondRG”, “rg_MyThirdRG”]
}

module “resourcegroup” {
 for_each = var.names
 source = “./resourcegroup”
 region = var.region
 name = each.value
}

Code block 8: the region.tf file calling the resourcegroup module.

 Whitebook | A clear understanding of loops in Terraform | 13

A snippet of the plan result is:

Plan Result 7: Snippet of the plan: three resource-groups and three vnets created.

The snippet of the plan shows that there are three resource-groups created. Each resource-
group contains its own virtual network.

Share data among modules
A module will not return any output data unless this is specified explicitly. Sometimes you
want to share data among modules. With an output block it is possible to set any particular
value. For example, another module needs the name of the resource-groups. Then set an
output containing the name of the resource-group in the resourcegroup.tf.

resource “azurerm_resource_group” “rg_MyResourceGroups” {
 name = var.name
 location = var.region
}

resource “azurerm_virtual_network” “apim_vnet” {
 name = “vnet-of-${azurerm_resource_group.rg_
MyResourceGroups.name}”
 location = var.region
 resource_group_name = azurerm_resource_group.rg_MyResourceGroups.name
 address_space = [“10.0.0.0/20”]
}

 Whitebook | A clear understanding of loops in Terraform | 14

output “resource_group_name” {
 value = azurerm_resource_group.rg_MyResourceGroups.name
}

Code block 9: added an output to the resourcegroup.tf file

Because the resourcegroup module is called three times, Terraform will create three
resourcegroup maps containing the resource_group_name as key. Visualized it looks like this:

Another module, defined on the same level, can use the output of the resourcegroup
module and loop again over it.

module “resourcegroup” {
 for_each = var.names
 source = “./resourcegroup”
 region = var.region
 name = each.value
}

module “resourcegroup2” {
 for_each = module.resourcegroup
 source = “./resourcegroup2”
 region = var.region
 name = “copy_of_resourcegroup:${each.value.resource_group_name}”
}

Code block 9: for each resourcegroup also a copy will be created.

Resource Group 1
resource_group_name =

rg_MyFirstRG

Resource Group 2
resource_group_name =

rg_MySecondRG

Resource Group 3
resource_group_name =

rg_MyThirdRG

 Whitebook | A clear understanding of loops in Terraform | 15

Notice that name contains the expression ‘each.value.name’. An module output is always
a map in case of a for_each. (a tuple in case of a count). So, also the key ‘resource_group_
name’ needs to be specified.

 

 Whitebook | A clear understanding of loops in Terraform | 16

Loop over nested modules using the for-loop
Create a list of outputs
Back to the originally tree structure of the code. The terraform.tf file calls module ‘region’
presented in folder ‘region’. Region calls the module ‘resourcegroup’ multiple times in folder
‘resourcegroup’.

Figure 2: terraform.tf ➞ region.tf ➞ resourcegroup.tf

The region module is responsible for calling the resourcegroup three times. What to do if the
output of the resourcegroup is not only needed in another module of the same level, but
also in a module situated on an higher level. In our case the level of terraform.tf.

Terraform.tf calls the module region. As mentioned before, a module only returns an output
if there are outputs declared inside the module. This implicits that at the region level, an
output must be declared containing the values of the three resource-group names. However,
a for_each cannot be used in an output declaration. For this purposes, Terraform created
another way of looping: the for-expression.

module “resourcegroup” {
 for_each = var.names
 source = “./resourcegroup”
 region = var.region
 name = each.value
}

output “set_of_resource_group_names” {
 value = toset([for rg in module.resourcegroup : rg.resource_group_name
])
}

Code block 10: for expression is used to gather all resource-groups names

 Whitebook | A clear understanding of loops in Terraform | 17

In region.tf an output is created containing all the names of the created resource-groups.
This is done with the for expression. It works as follows:

The for expression loops over each resourcegroup object and put that in a temp object called
‘rg’. The ‘rg’ object is just a temporary name that will be removed when the loop is done.
From the object ‘rg’, it gets the resource_group_name and put that in a list. The toset()
function converts the list into a set. When the loop is done a set of resource_group_names is
created that can be used in terraform.tf.

Loops over loops over lo…
The previous example can be even more expanded. What if we want the same resource-
groups in multiple regions. In practice infrastructures are shared among multiple regions.
Most of the time these are exact copies, also called mirrors, of each other. This is pretty
straightforward now with loops:

variable “regions” {
 type = set(string)
 default = [“westeurope”, “northeurope”]
}

module “main” {
 for_each = var.regions
 source = “./region”
 region = each.value
}

Code block 11: loop over regions in terraform.tf

You will see it already coming. How to pass now all the resource-group names of each region
to a new module. Again the for expression is our saviour. The for expression can also be
nested in Terraform. So a for loop can contain a for loop and that can contain a for loop… and
so on:

 Whitebook | A clear understanding of loops in Terraform | 18

variable “regions” {
 type = set(string)
 default = [“westeurope”, “northeurope”]
}

module “main” {
 for_each = var.regions
 source = “./region”
 region = each.value
}

module “otherResource” {
 source = “./otherResource”
 set_of_rgnames = flatten([
 for region in module.main : [
 for rgname in region.set_of_resource_group_names :
rgname
]
])
}

Code block 12: loop over loops

A summary of the steps that happens for the set_of_rgnames:

1. To create a flat set of string values a new expression ‘flatten’ is used. This expression
‘flattens’ the values of both loops into one single set of values.

2. Next, the code loops over the regions. For each region it gets the ‘set of group names’.
3. It ends with the loop over the set of group names and returning the value of each group name.

 Whitebook | A clear understanding of loops in Terraform | 19

Loop over a set of objects
As mentioned in the first chapter ‘Loop over a singular resource’, a for_each loop can only
be used for sets/maps of strings. But what if you don’t have a set of strings but only a set of
objects. Then the set of objects must be converted to a set of maps that contains string keys
and object values. This will be more clear in the following example:

data “azurerm_virtual_machine” “get_vm_principalIDs” {
 for_each = { for vm_object in var.vm_objects : vm_object.vm_
name => vm_object }
 name = each.value.vm_name
 resource_group_name = each.value.resource_group_name
}

variable “vm_objects” {
 type = set(object({
 resource_group_name = string
 vm_name = string
 }))
}

Code block 13: loop over a set of objects

The code block above shows a variable that contains a set of objects. The object contains two
keys ‘resource_group_name’ and ‘vm_name’. This variable represents the virtual machine
names created created in both regions west- and north-Europe. For each virtual machine the
principal id, also known as object id, will be tracked.

 Whitebook | A clear understanding of loops in Terraform | 20

In the data block the magic happens. Here the for expression loops over every object. It get
the vm_name of the object and set this vm_name as the key of the new created map. The
value of the key is then, surprise…. the object itself. Because the value contains the object
again, both vm_name and resource_group_name can be used in the data block after defining
‘each.value’. Visualized it looks like the following:

name = vm1_west
resource_group_name = rg_westeurope

Set of objects Map of string keys and object values

vm1_west = {
 vm_name = vm1_west
 resource_group_name =
 rg_westeurope
 }
vm2_west = {
 vm_name = vm2_west
 resource_group_name =
 rg_westeurope
 }
vm1_north = {
 vm_name = vm1_north
 resource_group_name =
 rg_northeurope
 }
vm2_north = {
 vm_name = vm2_north
 resource_group_name =
 rg_northeurope
 }

name = vm2_west
resource_group_name = rg_westeurope

name = vm1_noth
resource_group_name = rg_northeurope

name = vm2_noth
resource_group_name = rg_northeurope

 Whitebook | A clear understanding of loops in Terraform | 21

Only use ‘known values’ in for_each loops
Terraform mentioned in the limitation page of the for each the following ‘The keys of the
map (or all the values in the case of a set of strings) must be known values, or you will get an
error message that for_each has dependencies that cannot be determined before apply, and
a -target may be needed.’

The above sentence actually applies a lot. Resources can need id’s of other resources. For
example, to associate an virtual machine to an application gateway, the id’s of both resources
are needed. However, the id of a resource is not an ‘always known’ value. Namely, the id of
a resource will be determined after the creation of the resource and is not known before.
Using id’s in a for_each will make the Terraform plan unstable. It depends on the existing of a
resource how Terraform reacts.

For example, when there are three virtual machines already created and I use those id’s in a
for_each. The Terraform code will succeed. The virtual machines exist already so Terraform
is able to track down the id’s of these virtual machines. However, when a new fourth virtual
machine is added to the code, the plan will fail. The fourth machine still has to be created.
Therefore, Terraform cannot track down the id of that virtual machine.

Instead of id’s, it’s better to use the names of the resources. Names are already predefined
by the user beforehand. Unless the virtual machine is created or not, Terraform will not fail
because the name of the virtual machine is already known before creation. With a ‘data’
object Terraform can search for corresponding id of the resource. See the example below:

data “azurerm_virtual_machine” “get_vm_principalIDs” {
 for_each = { for vm_object in var.vm_objects : vm_object.vm_
name => vm_object }
 name = each.value.vm_name
 resource_group_name = each.value.resource_group_name
}

resource “azurerm_role_assignment” “apics_role_assignment” {
 for_each = data.azurerm_virtual_machine.get_vm_principalIDs
 scope = azurerm_storage_container.apim_storage_
container.resource_manager_id
 role_definition_name = “Storage Blob Data Reader”
 principal_id = each.value.identity[0].principal_id
}

https://www.terraform.io/language/meta-arguments/for_each#limitations-on-values-used-in-for_each

 Whitebook | A clear understanding of loops in Terraform | 22

variable “vm_objects” {
 type = set(object({
 resource_group_name = string
 vm_name = string
 }))
}

Code block 14: loop over names, not id’s! The corresponding id’s you can get with the data object.

The above snippet of code tries to associate the principal_id’s of virtual machines to the
container of the storage account. With this association our virtual machines can access the
data inside the storage account. Instead of a set of principal_id’s a set of objects is given to
the module. Each object contains the name of the virtual machine and the resource-group
name. For each virtual machine the id is tracked down in the data block.

 Whitebook | A clear understanding of loops in Terraform | 23

Conclusion
Loops are very powerful in Terraform. For example, looping over modules can created
whole infrastructures with just a single line of code. However, because of their fragility, they
must be well thought before using them in the code. When loops are implemented in the
wrong way, resources can be easily destroyed and recreated again and because of that, the
infrastructure will lose its high availability. The most important fist rule to use is ‘always use
for_each before count’. Use count only when there is no other possibility left. Furthermore,
only loop over values that can be determined beforehand. When this is not the case,
Terraform will show errors when new unknown resources are created in the future. Keeping
these rules in mind, the loops will reduce lines of code in your Terraform code and make it
much better readable.

